Kontrol Optimal Model Dinamik Penyebaran Penyakit Tuberkulosis dengan Kekambuhan di Kota Semarang

Authors

  • Lathifatul Inayah Alhusna Lathifatul Inayah Alhusna Lathifah
  • Ratna Herdiana

DOI:

https://doi.org/10.12962/limits.v22i3.4349

Keywords:

Tuberkulosis, Kekambuhan, Kontrol Optimal

Abstract

Dalam penelitian ini, kami mengusulkan model dinamik SVIR (Susceptible, Vaccinated, Infectious, Recovered) dengan mempertimbangkan kekambuhan pada penyebaran penyakit Tuberkulosis (TB). Dalam model yang diusulkan ini, kami menggabungkan teori kontrol optimal yang bertujuan untuk mengurangi jumlah penyebaran kasus TB. Terdapat dua variabel kontrol yang digunakan, yaitu edukasi pencegahan TB kepada masyarakat umum, dan pengobatan untuk individu yang terinfeksi aktif. Dalam hal ini, untuk mencari solusi pengendalian yang optimal kami menggunakan Prinsip Minimum Pontryagin. Simulasi numerik dalam menyelesaikan sistem pada masalah kontrol optimal ini menggunakan metode numerik Sweep Maju-Mundur dan metode Runge-Kutta orde keempat. Hasil dari simulasi numerik digunakan untuk menggambarkan perbedaan antara strategi menggunakan kontrol dengan tanpa menggunakan kontrol. Dari hasil simulasi numerik, kami menemukan bahwa jika pengendalian edukasi pencegahan TB dan pengobatan diterapkan secara bersamaan akan lebih efektif dibandingkan dengan menerapkan kontrol secara terpisah, karena subpopulasi yang terinfeksi dapat dikendalikan dengan lebih baik di mana penurunan jumlah kasus mencapai 99.90% dan bertambahnya subpopulasi yang sembuh.

References

[1]

Perhimpunan Dokter Paru Indonesia, Pedoman diagnosis dan penatalaksanaan tuberkulosis di Indonesia, Revisi 2 ed., Jakarta: Perhimpunan Dokter Paru Indonesia, 2021.

[2]

World Health Organization, Global Tuberculosis Report 2023, Geneva: World Health Organization, 2023.

[3]

Badan Statistik Statistik Provinsi Jawa Tengah, "Kasus Penyakit Menurut Kabupaten/Kota dan Jenis Penyakit di Provinsi Jawa Tengah, 2023," 2023. [Online]. Available: https://jateng.bps.go.id/id/statistics-table/3/YTA1Q1ptRmhUMEpXWTBsQmQyZzBjVzg wUzB4aVp6MDkjMw==/kasus-penyakit-menurut-kabupaten-kota-dan-jenis-penyakit-di-provinsi-jawa-tengah--2023.html?year=2023.

[4]

M.-L. Lambert, E. Hasker, A. V. Deun, D. Roberfroid, M. Boelaert and P. V. d. Stuyft, "Recurrence in tuberculosis: relapse or reinfection?," The Lancet Infectious Diseases, vol. 3, no. 5, pp. 282-287, 2003.

[5]

H. Nasution and S. Marlina, "Mathematical Model Susceptible, Infected and Recovered with Therapy of Tuberculosis Transmission," Journal of Physics: Conference Series, 2020.

[6]

P. Widyaningsih, A. A. Nugroho and D. R. S. Saputro, "Susceptible infected recovered model with vaccination, immunity loss, and relapse to study tuberculosis transmission in Indonesia," AIP Conference Proceedings, 2018.

[7]

S. T. Akinyemi, A. O. Ibrahim, I. G. Usman and O. Odetunde, "Global Stability Analysis of Sir Epidemic Model with Relapse and Immunity Loss," International Journal of Applied Science and Mathematical Theory, vol. 2, no. 1, 2016.

[8]

A. N. Ifati, Sutimin, R. Herdiana, R. H. S. Utomo and A. H. Permatasari, "Analysis of a mathematical model in the spread of tuberculosis epidemic with vaccination and relapse effect," Journal of Physics: Conference Series, 2021.

[9]

Sutimin, R. Herdiana, R. H. S. Utomo and A. H. Permatasari, "Analysis of TB epidemic model with relapse and treatment," Journal of Physics: Conference Series, 2021

[10]

H. Nasution, P. Sitompul and L. P. Sinaga, "Effect of the Vaccine on the Dynamics of Speread of Tuberculosis SIR Models," Journal of Physics: Conference Series, 2021.

[11]

G. T. Tilahun, M. T. Belachew and Z. Gebreselassie, "Stochastic model of tuberculosis with vaccination of newborns," Advances in Difference Equations, 2020.

[12]

Kementerian Kesehatan Republik Indonesia, Profil Kesehatan Indonesia 2023, Jakarta: Kementerian Kesehatan Republik Indonesia, 2023.

[13]

H. L. Saputra, "Optimal control of tuberculosis disease spread with imperfect vaccination," in AIP Conference Proceedings, 2024.

[14]

M. O. Oke, O. M. Ogunmiloro, C. T. Akinwumi, S. O. Ayinde, T. O. Ogunlade and K. J. Adebayo, "On the application of optimal control strategies to a generalized SVIR model," Journal of Physics: Conference Series, 2021.

[15]

D. Kereyu and S. Demie, "Transmission dynamics model of Tuberculosis with optimal control strategies in Haramaya district, Ethiopia," Advances in Difference Equations, 2021.

[16]

D. Mahardika and S. Kartika, "Dynamic System of Tuberculosis Model using Optimal Control in Semarang City Indonesia," Barekeng: Journal of Mathematics and Its Applications, vol. 18, no. 1, pp. 0043-0052, 2024.

[17]

R. Herdiana, H. Tjahjana, A. Henindya and N. S. A. Latif, "Optimal Control of Smoking Cessation Programs for Two Subclasses of Smoker," Journal of Mathematics and Computer Science, vol. 31, pp. 41-45, 2023.

[18]

S. Ma, T. Tian and H. Hou, "Global stability and optimal control of an age-structured SVEIR epidemic model with waning immunity and relapses," Journal of Mathematical Biology, vol. 89, no. 32, 2024.

[19]

A. L. Peressini, F. E. Sullivan and J. J. Uhl, The Mathematics of Nonlinear Programming, Springer-Verlag New York Inc., 1988.

[20]

D. Aldila, M. Z. Ndii and B. M. Samiadji, "Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness," Mathematical Biosciences and Engineering, vol. 17, no. 6, pp. 6355-6389, 2020..

Published

2025-11-20

How to Cite

Lathifatul Inayah Alhusna, L. I. A., & Ratna Herdiana. (2025). Kontrol Optimal Model Dinamik Penyebaran Penyakit Tuberkulosis dengan Kekambuhan di Kota Semarang. Limits: Journal of Mathematics and Its Applications, 22(3), 217–236. https://doi.org/10.12962/limits.v22i3.4349