Sifat Kemonotonan Barisan Trapezoid Sum dari Kelas Fungsi Nonkonveks dan Nonkonkaf

Authors

  • Yudasril Departemen Matematika Institut Pertanian Bogor
  • Berlian Setiawaty Departemen Matematika Institut Pertanian Bogor
  • I Gusti Putu Purnaba Departemen Matematika Institut Pertanian Bogor

Keywords:

monotone, nonconcave, nonconvex, trapezoid sum

Abstract

The objective of this research is to show the monotonicity properties of the trapezoid sum sequence in general of nonconvex or nonconcave real valued continuous functions on interval  corresponding to partitions of  obtained by dividing  into equal length subintervals. The decreasing monotony of the trapezoid sum generically does not happen in class of nonconcave functions. The same thing happens when restricted to the monotone nonconcave functions, namely in class of nonconcave increasing or nonconcave decreasing functions. Furthermore, in class of nonconvex functions, the trapezoid sum sequence generically does not increasing, as well as in class of increasing nonconvex or decreasing nonconvex functions.

Downloads

Download data is not yet available.

References

R. G. Bartle and D. R. Shertbert. Introduction to Real Analysis Fourth Edition. New Jersey, US: J Wiley, 2010.

W. Cheney and D. Kincaid. Numerical Mathematics And Computing Sixth Edition. Texas, US: Thomson Higher Education, 2008.

G. Bennet and G. Jameson, "Monotonic Avarages of Convex Function", Mathematical Analysis and Applications, vol. 252, no. 1, pp. 410-436, 2000.

I. Kyrezi, “Monotonicity properties of Darboux sums,” Real Anal. Exch., vol. 35, no.1, pp. 43-64, 2010.

T. S. MA. Banach-Hilbert Spaces, Vector Measures and Group Representations. Singapore: World Scientific Publishing, 2002.

D. Chatterjee. Topology: General and Algebraic. New Delhi, IN: New Age International Limited, 2007.

J. C. Oxtoby. Measure and Category. London, UK: Springer-Verlag, 1980.

M. Hochman, "Genericity in Topological Dynamics", Ergodic Theory and Dynamical Systems, vol. 28, no. 1, pp. 125-165, 2008.

G. M. Lee and T. S. Pham, "Generic Properties for Semialgebraic Programs", SIAM Journal on Optimization, vol. 27, no. 3, pp. 2061-2084, 2017.

G. M. Lee and T. S. Pham, "Stability and Genericity for Semialgebraic Compact Programs", Journal of Optimization Theory and Applications, vol. 169, no. 5, pp. 473-495, 2016.

F. Balibrea, J. Smital, and M. Stefankova, "On Generic Properties of Nonautonomous Dynamical Systems", International Journal of Bifurcation and Chaos, vol. 28, no. 8, p. 1850102, 2018.

Downloads

Published

2022-05-15

How to Cite

Yudasril, Berlian Setiawaty, & I Gusti Putu Purnaba. (2022). Sifat Kemonotonan Barisan Trapezoid Sum dari Kelas Fungsi Nonkonveks dan Nonkonkaf. imits: ournal of athematics and ts pplications, 19(1), 49–63. etrieved from https://journal.its.ac.id/index.php/limits/article/view/5346