Evaluasi Regresi Terklaster Fuzzy Spasial Simultan dengan Pendekatan Simulasi
DOI:
https://doi.org/10.12962/limits.v22i3.5425Keywords:
Simultaneous clustered regression, spatial clustering, spatial fuzzy, SFCR, FGWCRAbstract
Spatial data refers to data that contains information related to the geographical characteristics of a region. As spatial data evolves into large-scale datasets, efficient analytical methods are required for processing the data. One such method suitable for analyzing large-scale spatial data is spatial fuzzy clustering. This method allows for the adjustment of cluster weights based on data likelihood, making it more capable of capturing the actual local variations present in spatial data. In this study, two types of spatial fuzzy clustering methods were evaluated through simulation: the method with a spatial penalty, Spatial Fuzzy Clustered Regression (SFCR), and the method without a spatial penalty, Fuzzy Geographically Weighted Clustering Regression (FGWCR). SFCR is a method that combines spatial clustering and regression modeling simultaneously, resulting in more efficient computation time. FGWCR produces clusters by considering both spatial proximity and attribute similarity, making it effective for spatial data analysis. The data were designed to form six clusters during the simulation process. The simulation results showed that the SFCR method was more capable of accurately capturing data variation and cluster distribution. The R² values for SFCR at a fuzziness degree of 2 and under weak, moderate, and strong spatial autocorrelation were 99.7%, 99.6%, and 99.5%, respectively, while the R² values for FGWCR were 98.5%, 98.6%, and 98.1%. Model performance was evaluated using RMSE, where lower RMSE values indicate better performance. The RMSE values for the SFCR method at a fuzziness degree of 2 and under weak, moderate, and strong spatial autocorrelation were 0.30, 0.289, and 0.298, respectively, while the RMSE values for the FGWCR method were 0.659, 0.541, and 0.551.
Downloads
References
A. Djuraidah, Monograph Penerapan dan Pengembangan Regresi Spasial dengan Studi Kasus pada Kesehatan, Sosial, dan Ekonomi. Bogor: IPB Press, 2020.
S. Cho, D. M. Lambert, S. G. Kim, dan S. Jung, “Extreme coefficients in geographically weighted regression and their effects on mapping,” GIScience Remote Sens., vol. 46, no. 3, hal. 273–288, 2009, doi: 10.2747/1548-1603.46.3.273.
S. Sugasawa dan D. Murakami, “Spatially clustered regression,” Spat. Stat., vol. 44, hal. 100525, Agu 2021, doi: 10.1016/j.spasta.2021.100525.
V. K. Malhotra, H. Kaur, dan M. A. Alam, “An Analysis of Fuzzy Clustering Methods,” Int. J. Comput. Appl., vol. 94, no. 19, hal. 9–12, 2014.
B. Tutmez, “Spatial dependence-based fuzzy regression clustering,” Appl. Soft Comput., vol. 12, no. 1, hal. 1–13, Jan 2012, doi: 10.1016/j.asoc.2011.09.012.
S. Pramana dan I. H. Pamungkas, “Improvement Method of Fuzzy Geographically Weighted Clustering using Gravitational Search Algorithm,” J. Ilmu Komput. dan Inf., vol. 11, no. 1, hal. 10–16, Feb 2018, doi: 10.21609/jiki.v11i1.580.
G. Grekousis, “Local fuzzy geographically weighted clustering: a new method for geodemographic segmentation,” Int. J. Geogr. Inf. Sci., vol. 35, no. 1, hal. 152–174, Jan 2021, doi: 10.1080/13658816.2020.1808221.
I. Made Sumertajaya, M. Nur Aidi, dan W. Nurpadilah, “Mixed Geographically and Temporally Weighted Regression with Cluster in West Java’s Poverty Cases,” Int. J. Sci. Res. Publ., vol. 10, no. 12, hal. 566–572, Des 2020, doi: 10.29322/IJSRP.10.12.2020.p10865.
M. N. Aidi et al., “Province clustering based on the percentage of communicable disease using the BCBimax biclustering algorithm,” Geospat. Health, vol. 18, no. 2, Sep 2023, doi: 10.4081/gh.2023.1202.
D. Nicholson, O. A. Vanli, S. Jung, dan E. E. Ozguven, “A spatial regression and clustering method for developing place-specific social vulnerability indices using census and social media data,” Int. J. Disaster Risk Reduct., vol. 38, hal. 101224, Agu 2019, doi: 10.1016/j.ijdrr.2019.101224.
F. Li dan H. Sang, “Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets,” J. Am. Stat. Assoc., vol. 114, no. 527, hal. 1050–1062, Jul 2019, doi: 10.1080/01621459.2018.1529595.
I. K. Hasan, Nurwan, Nur Falaq, dan Muhammad Rezky Friesta Payu, “Optimization Fuzzy Geographically Weighted Clustering with Gravitational Search Algorithm for Factors Analysis Associated with Stunting,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, hal. 120–128, Feb 2023, doi: 10.29207/resti.v7i1.4508.
M. Sato-Ilic, “On fuzzy clustering based regression models,” in IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS ’04., IEEE, 2004, hal. 216-221 Vol.1. doi: 10.1109/NAFIPS.2004.1336280.
G. . Mason dan R. . Jacobson, “Fuzzy Geographically Weighted Clustering,” in Proceedings of the 9th International Conference on Geocomputation, 2007, hal. 1–7.
K. Zhou, C. Fu, dan S. Yang, “Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation,” Sci. China Inf. Sci., vol. 57, no. 11, hal. 1–8, Nov 2014, doi: 10.1007/s11432-014-5146-0.
D. L. Pham, “Spatial Models for Fuzzy Clustering,” Comput. Vis. Image Underst., vol. 84, no. 2, hal. 285–297, Nov 2001, doi: 10.1006/cviu.2001.0951.
Fotheringham AS, C. Brunsdon, dan C. M, Geographically Weighted Regression the Analysis of Spatially Varying Relationships. New York: Wiley, 2002.
A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) dalam Algoritma Regresi Linear untuk Prediksi Produksi Padi,” SAINTEKBU, vol. 11, no. 1, hal. 78–83, Feb 2019, doi: 10.32764/saintekbu.v11i1.298.



