Pelabelan Jarak Tak Teratur Titik Pada Graf Persahabatan Lengkap Diperumum
Keywords:
pelabelan jarak tak teratur titik, graf persahabatan, graf persahabatan lengkap diperumumAbstract
Graph labeling is the labeling of graph elements such as vertex, edge and both. distance vertex irregular labeling is a type of labeling resulting from the development of distance magic labeling and (a, b)-distance anti-magic labeling. Let , be a simple graph. The distance vertex irregular labeling of is a vertex labeling so that the weight of each vertex is different. The weight of is calculated based on the sum of vertices label in the set of neighboring vertex , namely Distance vertex irregularity strength of , denoted as d , is the smallest value of the largest label so that has a distance vertex irregular labeling. This study aims to construct a generalized complete friendship graph , determine the labeling function, determine the distance vertex irregularity strength then formulate and prove the theorem resulting from the labeling. The object of this research is to label each vertex on a generalized complete friendship graph. This research method is a literature study obtained through various sources. Based on the research results, it is known that the graph has distance vertex irregular labeling. For an integer m and n, , the labeling function of is and . Distance vertex irregularity strength of generalized complete friendship graph is .
Downloads
References
H. Parkhurst, “Pelabelan Total (a,d)-Sisi Anti Ajaib Super Pada Gabungan Graf Lengkap mKn,” J. Mat. UNAND, 2014, doi: 10.25077/jmu.3.4.24-27.2014.
J. A. Gallian, “A Dynamic Survey of Graph Labeling,” Electron. J. Comb., 2009.
I. P. Sahli, “Pelabelan Total (a,d)-Titik Antiajaib Super Pada Graf Petersen Yang Diperumum P(n,3) Dengan n Ganjil, n > 7,” J. Mat. UNAND, 2014, doi: 10.25077/jmu.3.1.68-77.2014.
C. Corazon Marzuki, “Nilai Total Ketakteraturan Sisi Dari m-Copy Graf Lintasan,” J. Sains Mat. dan Stat., vol. 5, no. 1, pp. 90–98, 2019.
Slamin, “On Distance Irregular Labelling of Graphs,” Far East J. Math. Sci., 2017, doi: 10.17654/MS102050919.
N. H. Bong, Y. Lin, and Slamin, “On Distance-Irregular Labelings of Cycles and Wheels,” Australas. J. Comb., 2017.
M. Baca, A. Semanicova-Fenovcikova, Slamin, and K. A. Sugeng, “On Inclusive Distance Vertex Irregular Labelings,” Electron. J. Graph Theory Appl., 2018, doi: 10.5614/ejgta.2018.6.1.5.
G. A. Liza, “Dimensi Partisi Dari Graf Persahabatan,” J. Mat. UNAND, 2019, doi: 10.25077/jmu.7.3.54-58.2018.
G. Chartrand, Introductory Graph Theory. New York: Dover Publications, Inc, 1985.
D. Irawati, “Pelabelan Total Sisi Ajaib Pada Graf Bintang,” J. Mat. UNAND, 2013, doi: 10.25077/jmu.2.1.85-89.2013.
G. Chartrand and L. Lesniak, Graphs & Digraphs. 2016.
T. Windartini, Slamin, and Dafik, “Nilai Ketakteraturan Jarak dari Graf Friendship dan Graf Matahari,” in Prosiding Seminar nasional Matematika 2014, 2014, pp. 211–219.



