Simulasi Jumlah Klaim Agregasi Berdistribusi Poisson Dengan Besar Klaim Berdistribusi Gamma dan Rayleigh

Authors

  • Rudi Ruswandi Jurusan Matematika FMIPA Unila Lampung Indonesia
  • Aang Nuryaman Jurusan Matematika FMIPA Unila Lampung Indonesia
  • Subian Saidi Jurusan Matematika FMIPA Unila Lampung Indonesia

Keywords:

Distribusi Gamma, Distribusi Rayleigh, Klaim Agregasi, Premi Murni, Risiko Maksimum

Abstract

A claim is a transfer of risk from the insured to the guarantor. Claims that occur individually are called individual claims, whereas collections of individual claims are called aggregation claims in a single period of vehicle insurance. Aggregation claims consist of a pattern of the number and amount (nominal value) of individual claims, so that the model of aggregation claims is formed from each distribution of the number and amount of claims. The distribution of claims is based on the probability density function and the cumulative density function. One method that can be used to obtain a claim aggregation model is to use convolution, which is by combining the distribution of the number of claims and the distribution of the amount of claims so that the expected value can be obtained to predict the value of pure premiums. In this paper, aggregation claim modeling will be carried out with the number of claims distributed Poisson and the amount of claims distributed Gamma. As comparison, we compare it with claim amount distributed Rayleigh. By using VaR (value at risk) and MSE (Mean Square Error) indicators, the results of the analysis show that the Rayleigh distribution is better used for distributing data that has extreme values.

Downloads

Download data is not yet available.

References

M.D. Kartikasari, " Premium Pricing of Liability Insurance Using Random Sum Model," Eksakta: Jurnal lImu-Ilmu IPA, 6(1), pp. 1-15, 2017.

G. Pramesti, " Distribusi Rayleigh untuk Klaim Agregasi", Media Statistika, 4(2), pp. 105-112, 2011.

C.K. Waha, A.J. Rindegan and T. Manurung " Model Distribusi Data Klaim Asuransi Mobil untuk Menentukan Premi Murni," d'Cartesian: Jurnal Matematika dan Aplikasi", 8(2), pp. 108-113, 2019.

N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt, Mathematics, 2nd ed, The Society of Actuaries, Schaumburg, Illinois.P., 1997.

R. V. Young., Encyclopedia of Actuarial Science. John Wiley & Sons, Ltd., 2004.

P. Jorion, Value At Risk, Second Edition. McGraw-Hill. New York. 2001.

A. R. Effendy, “Teori Risiko Aktuaria dengan Software R”, Universitas Gajah Mada Press, Yogyakarta, 2016.

Downloads

Published

2020-12-15

How to Cite

Rudi Ruswandi, Aang Nuryaman, & Subian Saidi. (2020). Simulasi Jumlah Klaim Agregasi Berdistribusi Poisson Dengan Besar Klaim Berdistribusi Gamma dan Rayleigh. imits: ournal of athematics and ts pplications, 17(2), 173–180. etrieved from https://journal.its.ac.id/index.php/limits/article/view/5474