Model Penyebaran Penyakit Filariasis dengan Intervensi Pengobatan Massal

Authors

  • Nova Meyana Sabara Departemen Matematika, FMIPA, Universitas Indonesia, Depok, Indonesia
  • Hengki Tasman Departemen Matematika, FMIPA, Universitas Indonesia, Depok, Indonesia

Keywords:

Lymphatic Filariasis, Mass Drug Administration, Mathematical Model

Abstract

Penyakit filariasis disebabkan oleh infeksi cacing mikrofilaria yang ditularkan oleh nyamuk betina ke manusia. Salah satu cara untuk mengeliminasi penyebaran infeksi tersebut adalah menggunakan pengobatan massal. Pengobatan massal merupakan pemberian obat tahunan ke seluruh populasi berisiko. Pada artikel ini, dikonstruksi model matematika untuk melihat pengaruh intervensi pengobatan massal terhadap penyebaran filariasis dalam populasi. Populasi manusia dipartisi dalam 6 kelas berdasarkan kerentanan, partisipasi dalam pengobatan massal, serta tingkat infeksi. Populasi nyamuk betina dipartisi menjadi dua kelas berdasarkan kerentanan dan keinfeksian. Berdasarkan analisis titik ekuilibrium dan simulasi numerik, dapat disimpulkan bahwa penyakit akan menghilang jika R0 < 1 dan penyakit akan mewabah jika R0 > 1. Pengobatan massal dapat mengurangi laju penyebaran penyakit, tapi tidak menjamin penyakit filariasis akan menghilang dari populasi jika laju infeksi individu rentan dan laju infeksi nyamuk rentan membesar.

Downloads

Download data is not yet available.

References

CDC, “Filariasis,” https://www.cdc.gov/parasites/lymphaticfilariasis/.

M. A. Stephano, M. M. Mayengo, J. I. Irunde, and D. Kuznetsov, “Sensitivity analysis and parameters estimation for the transmission of lymphatic filariasis,” Heliyon, vol. 9, no. 9, p. e20066, Sep. 2023, doi: 10.1016/j.heliyon.2023.e20066.

A. Chandy, A. S. Thakur, M. P. Singh, and A. Manigauha, “A review of neglected tropical diseases: filariasis,” Asian Pac J Trop Med, vol. 4, no. 7, pp. 581–586, Jul. 2011, doi: 10.1016/S1995-7645(11)60150-8.

R. P. Singh, L. De Britto, and G. Vijayalakshmi, “A study on ‘clinical epidemiology of filarial lymphedema patients attending filariasis clinic in Pondicherry,’” Clin Epidemiol Glob Health, vol. 8, no. 3, pp. 915–919, Sep. 2020, doi: 10.1016/j.cegh.2020.02.023.

P. Kulkarni, J. J. Thomas, J. Dowerah, M. R. Narayana Murthy, and K. Ravikumar, “Mass drug administration programme against lymphatic filariasis-an evaluation of coverage and compliance in a northern Karnataka district, India,” Clin Epidemiol Glob Health, vol. 8, no. 1, pp. 87–90, Mar. 2020, doi: 10.1016/j.cegh.2019.04.013.

WHO, “Filariasis,” https://www.cdc.gov/parasites/lymphaticfilariasis/.

A. Zerbo, R. Castro Delgado, and P. Arcos González, “Exploring the dynamic complexity of risk factors for vector-borne infections in sub-Saharan Africa: Case of urban lymphatic filariasis,” J Biosaf Biosecur, vol. 3, no. 1, pp. 17–21, Jun. 2021, doi: 10.1016/j.jobb.2021.03.002.

M. Laman et al., “Mass drug administration of ivermectin, diethylcarbamazine, plus albendazole compared with diethylcarbamazine plus albendazole for reduction of lymphatic filariasis endemicity in Papua New Guinea: a cluster-randomised trial.,” Lancet Infect Dis, vol. 22, no. 8, pp. 1200–1209, Aug. 2022, doi: 10.1016/S1473-3099(22)00026-3.

M. A. Irvine et al., “Effectiveness of a triple-drug regimen for global elimination of lymphatic filariasis: a modelling study,” Lancet Infect Dis, vol. 17, no. 4, pp. 451–458, Apr. 2017, doi: 10.1016/S1473-3099(16)30467-4.

C. P. Bhunu, “Assessing the potential of pre-exposure vaccination and chemoprophylaxis in the control of lymphatic filariasis,” Appl Math Comput, vol. 250, pp. 571–579, Jan. 2015, doi: 10.1016/j.amc.2014.11.018.

P. M. Mwamtobe, S. M. Simelane, S. Abelman, and J. M. Tchuenche, “Mathematical analysis of a lymphatic filariasis model with quarantine and treatment,” BMC Public Health, vol. 17, no. 1, p. 265, Dec. 2017, doi: 10.1186/s12889-017-4160-8.

F. A. Oguntolu, G. Bolarin, O. J. Peter, A. I. Enagi, and K. Oshinubi, “Mathematical model for the control of lymphatic filariasis transmission dynamics,” Communications in Mathematical Biology and Neuroscience, vol. 2021, 2021, doi: 10.28919/cmbn/5307.

P. K. N. Salonga, V. M. P. Mendoza, R. G. Mendoza, and V. Y. Belizario, “A mathematical model of the dynamics of lymphatic filariasis in Caraga Region, the Philippines,” R Soc Open Sci, vol. 8, no. 6, p. 201965, Jun. 2021, doi: 10.1098/rsos.201965.

O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” J R Soc Interface, vol. 7, no. 47, pp. 873–885, Jun. 2010, doi: 10.1098/rsif.2009.0386.

M. Martcheva, An introduction to mathematical epidemiology, 1st ed. Springer, 2015.

Downloads

Published

2023-11-15

How to Cite

Nova Meyana Sabara, & Hengki Tasman. (2023). Model Penyebaran Penyakit Filariasis dengan Intervensi Pengobatan Massal. imits: ournal of athematics and ts pplications, 20(3), 299–314. etrieved from https://journal.its.ac.id/index.php/limits/article/view/5600