Bilangan Kromatik Lokasi Amalgamasi Sisi Graf Lingkaran π’‚π’Žπ’‚π’π’”(π‘ͺ𝒏𝒋;𝒗𝒋,𝒍𝒗𝒋,𝒏) dengan 𝐧=πŸ‘,πŸ’,πŸβ‰€π£β‰€π¦, dan 𝐦β‰₯𝟐

Penulis

  • Des Welyyanti Departemen Matematika dan Sains Data, FMIPA, Universitas Andalas, Padang, Indonesia
  • Romie Daramenra Departemen Matematika dan Sains Data, FMIPA, Universitas Andalas, Padang, Indonesia
  • Lyra Yulianti Departemen Matematika dan Sains Data, FMIPA, Universitas Andalas, Padang, Indonesia

DOI:

https://doi.org/10.12962/limits.v22i3.8855

Kata Kunci:

Bilangan Kromatik Lokasi, Graf Lingkaran, Amalgamasi Sisi, Kode Warna, Partisi

Abstrak

Let 𝐺 be a connected graph and П={𝑆1,𝑆2,…,π‘†π‘˜} be an ordered partition of 𝑉(𝐺). Let 𝑆𝑖 is a set of color classes using colors 1,2,...,π‘˜ where π‘˜ as positive integer. The color code π‘ΠŸ(𝑣) of vertex 𝑣 in 𝐺 with respect to П is defined as π‘˜-vector, π‘ΠŸ(𝑣)=(𝑑(𝑣,𝑆1),𝑑(𝑣,𝑆2),…,𝑑(𝑣,𝑆𝑖)) where 𝑑(𝑣,𝑆𝑖)=π‘šπ‘–π‘›{𝑑(𝑣,π‘₯)|π‘₯βˆˆπ‘†π‘–} for 1β‰€π‘–β‰€π‘˜. If each of vertices in 𝐺 have distinct color codes, then 𝑐 is called as locating coloring of 𝐺. The minimum number of colors that are used for locating coloring is called as locating chromatic number of 𝐺, denoted by πœ’πΏ(𝐺). In this article we will discuss the chromatic number of the side amalgamation location of the circle graph π‘Žπ‘šπ‘Žπ‘™π‘ (𝐢𝑛𝑗;𝑣𝑗,𝑙𝑣𝑗,𝑛) with 𝑛=3,4,1β‰€π‘—β‰€π‘š, and π‘šβ‰₯2.

Referensi

[1] P. Z. G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, β€œThe locating-chromatic number of a graph,” Bull.Inst.Combin.Appl, vol. 36, pp. 8–101, 2002.

[2] Asmiati, H. Assiyatun, and E. T. Baskoro, β€œLocating-chromatic number of amalgamation of stars,” ITB J. Sci., vol. 43 A, no. 1, pp. 1–8, 2011, doi: 10.5614/itbj.sci.2011.43.1.1.

[3] Asmiati, E. T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, and S. Uttunggadewa, β€œThe locating-chromatic number of firecracker graphs,” Far East J. Math. Sci., vol. 63, no. 1, pp. 11–23, 2012.

[4] Asmiati and E. T. Baskoro, β€œCharacterizing all graphs containing cycles with locating-chromatic number 3,” in AIP Conference Proceedings, 2012, pp. 351–357. doi: 10.1063/1.4724167.

[5] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, β€œOn locating-chromatic number of complete n-ary tree,” 2013.

[6] D. Welyyanti, E. T. Baskoro, R. Simanjuntak, and S. Uttunggadewa, β€œOn Locating-chromatic Number for Graphs with Dominant Vertices,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 89–92. doi: 10.1016/j.procs.2015.12.081.

[7] A. Asmiati, L. Yulianti, and C. I. T. Widyastuti, β€œFurther Results on Locating Chromatic Number for Amalgamation of Stars Linking by One Path,” Indones. J. Comb., vol. 2, no. 1, p. 50, 2018, doi: 10.19184/ijc.2018.2.1.6.

[8] F. Hartiansyah and D. Darmaji, β€œBilangan Kromatik Lokasi pada Graf Hasil Amalgamasi Sisi dari Graf Bintang dan Graf Lengkap,” Zeta - Math J., vol. 8, no. 2, pp. 66–70, Jul. 2023, doi: 10.31102/zeta.2023.8.2.66-70.

[9] R. P. Soleha, β€œBilangan Kromatik Lokasi dari Hasil Amalgamasi Graf Bintang yang Dihubungkan oleh Suatu Graf Lingkaran,” J. Mat. UNAND, vol. IX, no. 1, pp. 46–52, 2020.

[10] N. Andriani, β€œBilangan Kromatik Lokasi Pada Graf Amalgamasi Kipas Berekor,” Limits J. Math. Its Appl., vol. 20, no. 1, p. 81, 2023, doi: 10.12962/limits.v20i1.12948.

[11] D. Welyyanti, D. Sutanto, and L. Yulianti, β€œJurnal Natural,” J. Nat., vol. 24, no. 2, pp. 115–127, 2024, doi: 10.24815/jn.v24i2.29356.

[12] H. Iswadi, E. T. Baskoro, A. N. M. Salman, and R. Simanjuntak, β€œThe Resolving Graph of Amalgamation of Cycles.”

[13] F. Abdmouleh, β€œBulletin of the Title : LINEAR OPERATORS,” vol. 40, no. 5, pp. 1057–1066, 2014.

Unduhan

Diterbitkan

2025-11-20

Cara Mengutip

Des Welyyanti, Romie Daramenra, & Lyra Yulianti. (2025). Bilangan Kromatik Lokasi Amalgamasi Sisi Graf Lingkaran π’‚π’Žπ’‚π’π’”(π‘ͺ𝒏𝒋;𝒗𝒋,𝒍𝒗𝒋,𝒏) dengan 𝐧=πŸ‘,πŸ’,πŸβ‰€π£β‰€π¦, dan 𝐦β‰₯𝟐. Limits: Journal of Mathematics and Its Applications, 22(3), 153–165. https://doi.org/10.12962/limits.v22i3.8855